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Abstract: This paper introduces a high-gain wideband power amplifier (PA) designed for V-band
applications, operating across 52 to 65 GHz. The proposed PA design employs a combination of
techniques, including pole-gain distribution, base-capacitive peaking, and the parallel configuration
of multiple small-sized transistors. These strategies enable significant bandwidth extension while
maintaining high gain, substantial output power, and a compact footprint. A two-stage PA using
the combination technique was developed and fabricated in a 130 nm SiGe BiCMOS process. The
PA prototype achieved a peak gain of 27.3 dB at 64 GHz, with a 3 dB bandwidth exceeding 13 GHz
and a fractional bandwidth greater than 22.2%. It delivered a maximum saturated output power of
19.7 dBm and an output 1 dB compression point of 18 dBm. Moreover, the PA chip occupied a total
silicon area of 0.57 mm2, including all testing pads with a compact core size of 0.198 mm2.

Keywords: millimeter-wave (mm-wave); SiGe BiCMOS; bandwidth extension; power amplifier

1. Introduction

The V-band encompasses a rich spectrum of 40 to 75 GHz and has been widely utilized
in high-speed wireless communications, high-resolution radar, and radio telescopes in
recent years [1–4]. These applications have driven an increasing demand for multi-band,
wideband millimeter-wave (mm-wave) front ends. Undoubtedly, the power amplifier (PA)
plays a crucial role as an indispensable component in a mm-wave transmitter. It is expected
to provide wide bandwidth, high gain, high output power (Pout), and excellent linearity
while maintaining a flat frequency response within the target band, ensuring optimal
spectrum efficiency. Due to the effective scaling of device sizes, SiGe BiCMOS has proven
to be an efficient technology for mm-wave systems [5–7]. Moreover, its compatibility
with bulk silicon CMOS for biasing circuits and digital logic makes it well suited for cost-
sensitive mass production. Consequently, there is a significant demand for a wideband
high-performance BiCMOS PA tailored for advanced mm-wave front ends.

Considerable work has been focused on increasing the operational bandwidth of
mm-wave PAs [8–16]. Several mm-wave wideband PAs developed in SiGe BiCMOS
technologies were reported in [10–13]. A 60 GHz single-stage, single-ended cascode PA
has been designed and fabricated using a 0.13 µm SiGe BiCMOS process, with a focus on
maximizing output power while minimizing chip area [11]. The PA features a 12 GHz
bandwidth spanning from 54 to 66 GHz, a power gain of 18 dB, and a maximum output
power of 14.7 dBm, all within a compact chip area of only 0.3 mm2. In reference [10], a
transformer-based two-way combining common emitter PA employs a capacitor coupling
technique to significantly suppress phase imbalance. The prototype SiGe PA operates under
1.5 V low-voltage conditions, delivering a bandwidth of 42–48.5 GHz, a peak gain of 29.5 dB,
and a very flat output 1 dB compression point (OP1dB) ranging from 14.5 to 14.8 dBm.
However, the saturated output power (Psat) is only 16.2 dBm, indicating considerable room
for improvement. Distributed architectures offer significant advantages in bandwidth
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expansion. Lee et al. reported an 18–50 GHz SiGe HBT common-base non-uniform
distributed PA [12]. By utilizing a multi-section lumped element artificial transmission line,
they achieved optimal load conditions for each active stage across the entire bandwidth.
The proposed mm-wave PA reaches a peak Psat of 19.0 dBm and a peak PAE of 19.1% at
32.0 GHz. Nevertheless, this PA occupies a large silicon area of 1.83 mm2. To enhance
efficiency and output power over a wide frequency range, a traditional transmission line-
based impedance inversion technique was applied to a 79 GHz differential Doherty PA
in a 130 nm SiGe BiCMOS technology [13]. The proposed amplifier achieves a 1 dB flat
bandwidth of 12 GHz, with a Psat of 17.0 dBm and a peak power-PAE of 11.6%. However,
achieving this excellent wideband response resulted in a noticeable compromise in the
output return loss. Zhao et al. introduced a design approach for interstage and output
matching networks in wideband power amplifiers, utilizing wideband inductively coupled
resonators and Norton transformations [8]. The prototype PA was fabricated using a 28 nm
CMOS process, delivering a Psat of 13 dBm over a 40–67 GHz bandwidth and an OP1dB of
12 dBm without the need for power combining. However, the peak gain is constrained to
13 dB. Additionally, several other wideband PAs based on CMOS technology have also been
reported [14–18]. The primary challenge in broadband PA design is achieving a wideband
response while balancing key parameters like gain, Pout, OP1dB, and physical size. Although
the aforementioned techniques can somewhat broaden the bandwidth, there is still an
urgent need for solutions that can significantly extend the bandwidth while maintaining
high gain, good gain flatness, high Pout and OP1dB, as well as a compact footprint.

In this paper, we propose an alternative V-band wideband PA with high gain and
high Pout. The design strategy utilizes a pole-gain tuning approach with dual transmission
lines and a common-base (CB) capacitive peaking technique to achieve a broadband gain
frequency response. Additionally, it employs a parallel configuration of multiple small-
sized transistors to enhance Pout. The proposed techniques are demonstrated in a two-stage
cascode PA using 130 nm SiGe BiCMOS technology. This article is organized as follows.
Section 2 discusses the design of the proposed wideband PA, including the overall scheme
selection and circuit schematic design. The post-simulation and measurement results that
validate the design technique are presented in Section 3. Finally, the paper concludes in
Section 4.

2. Circuit Analysis and Design

Figure 1 illustrates the simplified schematic of the proposed two-stage common-
emitter-common-base (CE-CB) V-band PA. The CE-CB configuration is chosen for its
superior voltage gain, higher breakdown voltage, and improved isolation compared to
standalone common-emitter (CE) or CB topologies. Two pole-gain tuning networks (PGTN)
with dual transmission lines are applied to both the first and second stages to adjust the
dominant poles at different frequencies, thereby achieving a wideband frequency response.
The base capacitors Cb1 and Cb2 are connected to the base terminals of transistors Q2 and Q4,
respectively, to reduce input parasitic capacitance and enhance power gain, particularly the
maximum power gain (MPG) at high operating frequencies. Transmission lines are utilized
as inductive passive components due to their smaller dimensions and higher quality factor
compared to traditional bulky spiral inductors.

2.1. Bandwidth Extension with Pole-Gain Tuning

Given the significant parasitic parameters at mm-wave frequencies, device models
have become exceedingly complex, making the optimization of mm-wave amplifiers a
considerably challenging task. However, the pole-gain tuning technique has been demon-
strated to be an effective approach for enhancing amplifier bandwidth, as it provides great
advantages in graphical analysis for bandwidth expansion [19,20]. Generally, the gain-
frequency response of an amplifier can be expressed as a function of a complex variable.
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Figure 1. Simplified schematic of the proposed V-band wideband PA. 
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Figure 1. Simplified schematic of the proposed V-band wideband PA.

This function includes the coefficient K, zeros zi, and poles pj. Equations (1) and (2),
respectively, provide the magnitude and phase responses of the function. As the value of s
approaches zero, the function value gradually decreases to 0. Conversely, as s nears a pole,
the function value experiences a substantial increase. The behavior of the gain-frequency
function is governed by its zeros and poles. Therefore, the wideband characteristics of the
amplifier can be obtained by tuning different dominant poles.
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The dominant poles of the proposed V-band PA with PGTN are plotted in Figure 2,
where ρj =

∣∣s− pj
∣∣ means the distance from s to pole j in the coordinate chart, and

θj = ∠
(
s− pj

)
means the angle from the horizontal. Note that the gain-frequency response

function is mainly controlled by poles close to the imaginary axis; poles far away from
the imaginary are ignored. Two pairs of complex conjugate poles, p1 and p2, and p3 and
p4, are introduced through PGTNs (PGTN1 and PGTN2) in the first and second stages,
respectively. The p1 (p2) govern the low-frequency gain characteristics and are referred to
as the low-frequency dominant poles PL. The pole p3 (p4) dominates the high-frequency
gain behavior and is designated as the high-frequency dominant pole PH.
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The PGTN1 in the first stage is primarily composed of transmission line inductors TL3
and TL4, which are used to generate the high-frequency dominant poles p3 and p4. TL3 is
directly connected to the collector of transistor Q2, isolating the load of the amplifier from
the output capacitor. This configuration introduces an initial delay in current reaching other
parts of the network, thereby delaying the rise time of the collector current in exchange for
improved bandwidth. Figure 3a illustrates the locus of the dominant poles p1 and p2, and
p3 and p4 as TL3 increases from 55 pH to 85 pH, while Figure 3b shows the gain-frequency
response of the proposed V-band PA under different conditions of TL3. It can be observed
that the high-frequency dominant poles p3 and p4 are more sensitive to variations in TL3
than the low-frequency dominant poles p1 and p2. The dominant poles, p3 and p4, quickly
move toward the imaginary axis and gradually shift to lower frequencies, while p1 and
p2 approach the imaginary axis much more slowly. This results in a significant reduction
in the minimum vector of poles p3 and p4, thereby enhancing the amplitude of the high-
frequency dominant poles p3 and p4. Figure 3b provides a more intuitive physical insight
into how the gain-frequency response of the amplifier is influenced by the high-frequency
dominant poles.
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Figure 3. (a) Locus of poles p1 (p2) and p3 (p4) when the TL3 increases from 55 to 85 pH; (b) Gain-
frequency response of the proposed amplifier when the TL3 values vary from 55 to 85 pH.

Similarly, the parallel peaking transmission line inductor TL4 delays the current flow
into its own branch, allowing more of the initial charging current to flow toward the
capacitive load. This reduces the rise time and can also extend the bandwidth. Figure 4a
depicts the locus of the dominant poles p1 and p2, and p3 and p4 as TL4 increases from
35 pH to 65 pH and illustrates the locus of the dominant poles p1 and p2, and p3 and p4
as TL4 increases from 55 pH to 85 pH, while Figure 4b displays the PA’s gain-frequency
response for different TL4 values. It can be seen that TL4 not only adjusts the gain-frequency
response of the high-frequency dominant pole but also significantly impacts the amplitude
of the low-frequency dominant pole, offering greater flexibility in tuning the amplifier’s
frequency response.
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To achieve further bandwidth expansion, the low-frequency dominant poles p1 and
p2 should be more flexibly tunable. These poles are established by the PGTN2, which
consists of the transmission line inductors TL6 and TL7, located in the second stage of the
amplifier. Figure 5a shows the locus of p1 and p2, as well as p3 and p4, as TL6 increases
from 40 to 100 pH. It can be observed that the low-frequency dominant poles p1 and p2 are
significantly affected by changes in TL6; as the value of TL6 increases, they rapidly shift
away from the imaginary axis and towards lower frequencies. In contrast, although the
high-frequency dominant poles p3 and p4 also move away from the imaginary axis, they do
so at a much slower and more parallel rate, resulting in relatively minor degradation of
their amplitude. Figure 5b demonstrates the gain-frequency response verification results
for TL6 variations affecting the low and high-frequency dominant poles. Furthermore,
the impact of the transmission line inductor TL7 on the amplifier’s dominant poles was
analyzed, as depicted in Figure 6. These results indicate that both dominant poles shift
closer to the imaginary axis, with the lower-frequency poles p1 and p2 moving more rapidly.
This shift helps mitigate the drawback of enhanced bandwidth at the expense of gain
degradation caused by the increase in TL6.
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Figure 6. (a) Locus of poles p1 (p2) and p3 (p4) when the TL7 increases from 40 to 100 pH; (b) Gain-
frequency response of the proposed amplifier when the TL7 values vary from 40 to 100 pH.

In summary, the proposed PGTN technique provides an effective approach to ex-
tending amplifier bandwidth. Firstly, the generated dominant pole pairs, p1 (p2) and p3
(p4), remain in the left-half plane, thus ensuring amplifier stability. Secondly, the high-
frequency dominant poles p3 and p4 generated by PGTN1 always move closer to the
imaginary axis, significantly enhancing the high-frequency response. Meanwhile, the
movement direction and magnitude of the low-frequency dominant poles, p1 (p2), can be
precisely controlled, providing considerable flexibility in adjusting the amplifier’s overall
gain-frequency response.
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2.2. Common-Base Capacitive Peaking Technique

At millimeter-wave frequencies, significant parasitic effects can degrade the amplify-
ing capability of active transistors. In this work, the capacitive peaking technique is applied
to the bases of the CB transistors Q2 and Q4 to reduce input parasitic capacitance, thereby
enhancing the amplifier’s gain, particularly in the high-frequency band. The simplified
small signal equivalent circuit of the one-stage CE-CB amplifier is plotted in Figure 7.
Disregarding the emitter junction resistance of the transistor, the gain-frequency response
can be approximately calculated as follows:

Av = Gm · Zout ≈ gm1 · (Zx||ZL) (3)

Zout = ZL||
[

ro2 + (ro2 · gm2 + 1) ·
(

1
s · Cs

||ro1

)]
(4)

Cs =
Cb · Cπ2

Cb + Cπ2
(5)

where Gm and Zout are the total equivalent transconductance and output impedance of
the CE-CB amplifier, respectively, ZX denotes the impedance observed at node X, gm1 and
gm2 are the transconductances of transistors Q1 and Q2, while Cπ1, Cπ2, ro1 and ro2 are the
equivalent input parasitic capacitors and the equivalent output resistors of the transistors
Q1 and Q2, respectively. As inferred from Equations (4) and (5), an increase in Cb will result
in a rise in the equivalent output impedance Zout, thereby enhancing the gain Av.
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Figure 7. Simplified small-signal equivalent circuit for one-stage CE-CB amplifier.

Figure 8 demonstrates the simulated MPG versus variations of the Cb. As the values of
Cb increase from 0 to 400 fF, the simulated MPG shows a significant improvement at high
frequencies. This enhancement contributes to achieving a flat wideband gain-frequency
response, as the transistor’s MPG naturally deteriorates with increasing frequency.
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2.3. Layout Configuration of Power Stage Transistors

To achieve high Pout within the target mm-wave frequencies, large-size transistors
are typically used in the power stage. However, this approach can introduce significant
parasitic effects, potentially diminishing the output power. These parasitic effects arise not
only from the transistors themselves but also from the metal interconnects and vias that
connect them. Therefore, optimizing the size and layout of the transistors in the power
stage is crucial to minimizing parasitic effects and improving the overall performance of
the PA. To construct large-sized power transistor cells with minimal parasitic parameters, a
configuration with multiple smaller transistors in parallel is commonly used. As shown
in Figure 9a, the power stage employs a parallel and staggered layout of four transistor
cells, each with an emitter length of 14 µm. To minimize parasitic capacitance and losses,
the interconnects for the emitters and collectors are designed using top-layer metal in an
interleaved pattern. Additionally, since the peaking capacitor Cb is directly connected to
the CB transistor, it has a significant impact on the overall output impedance of the power
stage at mm-wave frequencies. Therefore, Cb is also modeled together with the transistors
as an integrated whole.
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contours of the power stage.

On the other hand, load-pull simulations were conducted on the output stage at
various frequencies to determine the optimal power load impedance. As illustrated in
Figure 9b, impedance contours for Pout were plotted. Note that the optimal power load
impedance often differs significantly from the output matching point. In this design,
we selected an impedance of Zopt = 15.1 + 17.3j, which is close to the optimal power
load impedance, as the initial value for matching. This choice aimed to strike a balance
between Pout, bandwidth, and output matching. Figure 9b also depicts the impedance
transformation path, where the L-type network formed by TL8 and C7 transforms the 50 Ω
load impedance to Zopt. Furthermore, the source-pull simulation was applied to optimize
the output impedance of the first stage, ensuring it delivers sufficient power to drive the
power stage.

3. Experimental Results

The proposed wideband BiCMOS PA has been designed and fabricated using a
0.13-µm SiGe BiCMOS process, which is a high-performance technology with the compat-
ible 0.13 µm CMOS process. The process provided five thin metal layers and two thick
top metal layers labeled AM and LY, respectively. To enhance the quality factor (Q), all
transmission lines used for impedance matching in the circuit were designed using the
thick top metal layer AM. The bottom metal layer M1 served as a ground shield to reduce
the parasitic capacitance generated by the transmission lines. Additionally, a series of MIM
capacitors were employed in the bypass network to ensure effective power decoupling.
Figure 10 shows the die micrograph of the proposed PA. To enhance the amplifier’s per-
formance accuracy, passive components containing transmission lines, capacitors, testing
pads, interconnections, vias, and more were meticulously simulated and optimized as a
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whole using a full-wave 3D electromagnetic field simulator. The whole chip occupied
a silicon area of 0.75 mm × 0.76 mm, including all testing pads. The amplifier drew a
DC current of 35 mA from a 3.3 V supply voltage, resulting in a power consumption of
115.5 mW.
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Figure 10. Microphotograph of the proposed wideband PA.

On-wafer S-parameter measurements were carried out over the 45 to 65 GHz frequency
range using an MPI TS200-SE probe station with ground-signal-ground (G-S-G) probes
having a 150 µm pitch. The measurement setup featured a Keysight PNA-X-N5247B
network analyzer with a frequency range of 10 MHz to 67 GHz and a Keysight N6705C DC
power analyzer, recognized for its high-resolution capabilities. Calibration was conducted
using the standard short-open-load-through (SOLT) method.

Figure 11 shows the simulated and measured S-parameters of the proposed wideband
PA, which exhibit a consistent trend. The PA demonstrated an excellent wideband gain
response (|S21|) with a peak value of 27.3 dB at 64 GHz. The measured −3 dB bandwidth
spanned from 52 GHz to 65 GHz. It is worth noting that the high corner frequency
of the −3 dB gain bandwidth exceeded 65 GHz, but this could not be captured due to
limitations in our testing equipment. Therefore, the PA achieved a −3 dB gain bandwidth
of over 13 GHz, with a fractional bandwidth (FBW) exceeding 22.2%. The input return
loss (|S11|) and output return loss (|S22|) are also illustrated in Figure 9, and they were
compromised to some extent due to the desired wideband gain response and high output
power. Please note that the discrepancies between the simulation and measurement results
were primarily due to the foundry adding numerous randomized dummy metal layers
during the manufacturing process to pass the Design Rule Check (DRC). These dummy
metal layers introduced additional parasitic elements, which degraded the quality factor
(Q) and effective inductance of the T-matching network.
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Figure 12 presents the calculated stability factor K and delta ∆ derived from the mea-
sured S-parameters. Across the measured frequency range of 45 to 65 GHz, the stability fac-
tor K consistently exceeded 3.2, while the delta ∆ remained below 1. These results confirm
that the proposed wideband amplifier maintained stability under all operating conditions.
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The power-handling capability of the wideband amplifier was determined by evaluat-
ing the output 1 dB compression point (OP1dB) and the saturated output power within the
target −3 dB bandwidth. As illustrated in Figure 13, the measured OP1dB and saturated
output power varied with operating frequency. Within the specified −3 dB bandwidth fre-
quency range, the OP1dB was observed to range from 15.4 to 18 dBm. In the frequency range
of 52 to 65 GHz, the saturated output power varied from 17.4 to 19.7 dBm, demonstrating
excellent power flatness with a deviation of less than ±1.15 dBm.
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In Table 1, the measured performance of the proposed BiCMOS PA is summarized
and compared with the recently demonstrated silicon-based PAs. The proposed PA demon-
strated a competitive overall performance, offering a significant bandwidth in extension
while maintaining good results in gain, OP1dB, and saturated output power.
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Table 1. Performance summary and comparison with recently reported PAs.

Ref. Technology Bandwidth
(GHz)

FBW
(%)

Gain
(dB)

P1dB
(dBm)

Psat
(dBm)

Pdc
(mw)

Size
(mm2)

[17] 22 nm
SOI CMOS

56.5–63.5
(7) 11.7 22@60 GHz 15.7 18.6 351 0.43

[18] 65 nm
CMOS

50.2–59.4
(9.2) 16.78 20.8@54.4 GHz 5.9 13.0 - 0.3

[8] 28 nm
CMOS

40–67
(27) 51 13@50 GHz 12 13 - 0.33

[11]
130 nm

SiGe
BiCMOS

54–66
(12) 20.0 18@61.5 GHz 12 14.7 - 0.30

[10]
130 nm

SiGe
BiCMOS

42–48.5
(6.5) 14.36 29.5@44 GHz * 14.8 16.2 * - 1.00

[9]
130 nm

SiGe
BiCMOS

52–83.4 *
(31.4) 46.38 * 17.5@77 GHz >16 19.1 - 0.68

This work
130 nm

SiGe
BiCMOS

52–65
(>13) >22.2 27.3@64 GHz 18 19.7 115.5 0.57

FBW = bandwidth/f c, where f c is the center frequency of −3 dB bandwidth. * estimated from the figure.

4. Conclusions

A combination of techniques, including pole-gain distribution with PGTN, CB capaci-
tive peaking, and parallel configuration of multiple small-sized transistors, was developed
and successfully implemented in a V-band PA fabricated in a 130 nm SiGe BiCMOS process.
These techniques enable a wideband flat gain-frequency response without compromising
other key performance metrics. The PA achieved a peak gain of 27.3 dB, a−3 dB bandwidth
exceeding 13 GHz, a maximum Psat of 19.7 dBm, and a maximum OP1dB of 18 dBm while
occupying a small footprint of 0.57 mm2. This design approach shows significant potential
as an effective method for designing wideband amplifiers.
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